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Abstract—In this paper, an observer-based Fault Tolerant
control (FTC) study is proposed for nonlinear descriptor systems
approximated by Takagi-Sugeno representation. A control laws is
designed in order to compensate the actuator faults and allows
the system states to track a reference states corresponding to
the original descriptor system in the fault free case. The design
of such a control law requires the knowledge of the faults,
for this aim, a Proportional Multi-Integral Observer (PMIO) is
presented to achieve this task. The robust stability of the system
with the fault tolerant control law is analyzed with Lyapunov
theory. Sufficient stability conditions and the gains of the FTC
are obtained in terms of linear matrix inequalities (LMIs). A
numerical example is used to illustrate the efficiency of the
studied method.

I. INTRODUCTION

Reliability and safety of physical process have always been
a major concern for industrial manufacturers. There is an
absolute necessity to identify early unexpected changes in the
system before they lead to a complete breakdown. Fault De-
tection and Isolation (FDI) and Fault Tolerant Control (FTC)
for linear and nonlinear ordinary systems have already been
addressed in a large number of papers [11], [6]. FDI comprises
fault detection, fault isolation and even fault identification.
FTCS are generally divided into two classes: passive and
active. Passive FTCS are based on robust controller design
techniques and aim at synthesizing one (robust) controller
that makes the closed-loop system insensitive to certain faults.
This approach requires no online detection of the faults, and
is therefore computationally more attractive. Its applicability,
however, is very restricted due to its serious disadvantages.
As opposed by the passive methods, the active approach
to the design of FTCS is based on controller redesign, or
selection/mixing of predesigned controllers [10]. This tech-
nique usually requires a fault detection and diagnosis (FDD)
scheme that has the task to detect and localize the faults that
eventually occur in the system. The FDD part uses input-
output measurement from the system to detect and localize
the faults. The estimated faults are subsequently passed to a
reconfiguration mechanism (RM) that changes the parameters
and/or the structure of the controller in order to achieve an
accept able post-fault system performance. There are a number
of important issues when designing active FTCS. Probably the
most significant one is the integration between the FDD part
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and the FTC part. The majority of approaches in the literature
are focused on sytems modeled by many classes of nonlinear
ordinary systems [1], [9]. Nonlinear descriptor systems are not
also studied, then only a considerable amount of results have
been established in the framework of linear descriptor systems.
Very often the dynamics of real physical systems can not be
represented accurately enough by linear dynamical models so
that nonlinear models have to be used. This necessitates the
development of techniques for FTCS design that can explicitly
deal with nonlinearities in the mathematical representation of
the system. Nonlinearities are, in fact, very often encountered
in the representations of complex safety critical controlled
systems. During the last two decades, fuzzy technique has
been widely used in nonlinear system modeling, especially
for systems with incomplete plant information. Fuzzy logic
systems serve well as universal approximators [14]. The well-
known Takagi-Sugeno (T-S) fuzzy model [7] is a popular and
convenient tool in functional approximations. Accordingly, the
stabilization problem for systems in T-S fuzzy model has been
studied. Recently, a wider class of fuzzy systems described by
the descriptor form is considered in [12], where the model is
in the extended T-S fuzzy model. It is known that a descriptor
model describes a practical system better than a standard
dynamic model [4]. The descriptor system describes a wider
class of systems including physical models and nondynamic
constraints. In [13], a fuzzy model in the descriptor form is
introduced, and stability and stabilization problems for the
system are addressed.
Motivated by the above discussion, in this paper, a Pro-
portional Multi-Integral Observer (PMIO) is developed. The
proposed PMIO [2] is dedicated to the design of a fault tolerant
control strategy for a class of nonlinear descriptor systems
described by T-S models with measurable premise variables.
This paper is organized as follows: in Section II the fuzzy
T-S structure of nonlinear descriptor systems is introduced.
In Section III, we study the structure and the design of the
proposed Proportional Multi-Integral Observer. Fault tolerant
control by state feedback is tackled in Section IV,Finally, and
before concluding, an illustrative example is considered in
Section V.

II. SYSTEM DESCRIPTION AND PROBLEM
STATEMENT

A. Takagi-Sugeno fuzzy Model
Consider the following general form of nonlinear descriptor

systems: {
Eẋ(t) = A(x(t))x(t)+B(x(t))u(t)
y(t) =C(x(t))x(t) (1)
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where x(t) ∈ Rn, u(t) ∈ Rp (p ≤ n) and y(t) ∈ Rm represent
respectively the singular state, the control input and the output
vectors. A(x(t)), B(x(t)) and C(x(t)) are nonlinear matrices
functions. For simplicity, we can always consider that
E ∈ Rn×n is a constant matrix, it may not have full rank.
Fuzzy descriptor system is defined by extending the T-S
fuzzy ordinary model. The fuzzy T-S descriptor model is then
described by the following fuzzy IF-THEN rules;

IF ξ1(t) isM1i and ...and ξp(t) isM1p, T HEN{
Eẋ(t) = Aix(t)+Biu(t)
y(t) =Cix(t), i = 1...h (2)

Ai ∈ Rn×n,Bi ∈ Rn×p, and Ci ∈ Rm×n are time invariant matri-
ces of appropriate dimensions. r is the number of IF T HEN
rules, and Mi j are the fuzzy sets. ξ1(t)...ξ2(t) are premise
variable. We set ξ (t) = [ξ1(t)...ξp(t)]. Then the descriptor
equation is defined as follows;

Eẋ(t) =
h
∑

i=1
hi(ξ (t))

[
Aix(t)+Biu(t)

]
y(t) =

h
∑

i=1
hi(ξ (t))Cix(t)

(3)

where

hi(ξ (t)) =
βi(ξ (t))

∑h
i=1 βi(ξ (t))

, βi(ξ (t)) =
p

∏
j=1

Mi j(ξ j)

and Mi j(ξ j) are the membership functions of the fuzzy sets of

Mi j. We assume that βi(ξ (t))≥ 0, i = 1...h and
h
∑

i=1
βi(ξ (t))>

0, ∀ t hence the weighting function hi(ξ (t)) satisfy the prop-
erties of the sum convex.{

h
∑

i=1
hi(ξ (t)) = 1 0 ≤ hi(ξ (t))≤ 1

B. Problem statement

Under actuator faults, the system (3) can be rewritten in the
following form:

Eẋ(t) =
h
∑

i=1
hi(ξ (t))

[
Aix(t)+Bi(u(t)+ f (t))

]
y(t) =

h
∑

i=1
hi(ξ (t))Cix(t)

(4)

where f (t) is an actuator fault. It can be represented by
an additive or a multiplicative external signal [9]. These
malfunctions of an actuator faults can be represented by a
faulty control input u f (t) = (Ip−γ)u(t) which can be rewritten
as an external additive signal: u(t)+ f (t) where f (t) =−γu(t)
with

γ , diag[γ1,γ2, . . . ,γ p], 0 ≤ γk ≤ 1 such that γk = 1 → a total failure of the kth actuator k ∈ [1, . . . , p]
γk = 0 → the kth healthy actuator

The goal of this paper is to seek a control law to ensure
the closed-loop stability of the system (4) as well as the

actuator fault detection and isolation. This goal can be well
accomplished by introducing the following control law:

u f (t) =
h
∑

i=1
hi(ξ (t))(Γi(x(t)− x̂(t))− f̂ (t)+u(t)) (5)

where x̂(t) and f̂ (t) are respectively the state and the fault
estimations and Γi ∈ Rn×p the feedback gains to be found.
Before starting the FTC design, some useful basic assumption
for descriptor systems are given as follows [8] and [4]:

• A1. rank(CiBi) = rank(Bi) = p, ∀i = 1, . . . ,h,
• A2. The triple matrix (E,Ai,Ci) is R-observable,
for all i = 1, . . . ,h, i.e.,

rank
[

sE −Ai
Ci

]
= n,∀s ∈ C . (6)

where C denotes the complex plane.
• A3. The triple matrix (E,Ai,Ci) is Impulse-
observable, for all i = 1, . . . ,h, i.e.,

rank

 E Ai
0 E
0 Ci

= n+ rank(E) (7)

• A4. The fault f (t) is assumed to be a bounded time
varying signal with null sth derivative i.e. ∥ f (t)∥≤α1
and

∥∥ ḟ (t)
∥∥≤ α2 and 0 ≤ α1,α2 < ∞.

• A5. Only partial actuator faults are considered,
i.e.,γk ∈ [0 1[.

In the following section, we propose to design a PMIO to
estimate the system state vector and the fault signal simulta-
neously for T-S fuzzy descriptor model. After an efficient fault
tolerant control scheme by using the estimated states and faults
is developed.

III. T-S FUZZY PMIO DESIGN

By using the same idea in T-S fuzzy descriptor model, a
fuzzy Proportional Multi-Integral Observer uses a number of
local linear time-invariant observers. Each local observer is
associated with each fuzzy rule given below:

Rule i IF ξi(t) isM1i T hen

ż(t) = Niz(t)+Giu(t)+Liy(t +Hi f̂s(t))
x̂(t) = z(t)+M2y(t)
˙̂fs(t) = Φsi(y(t)− ŷ(t))+ f̂s−1(t)

...
˙̂f2(t) = Φ2i(y(t)− ŷ(t))+ f̂1(t)
˙̂f1(t) = Φ1i(y(t)− ŷ(t))

(8)

where x̂(t) ∈ Rn,z(t) ∈ Rn and f̂ (t) ∈ Rm are respectively the
estimated state vector, the state vector of the observer and the
estimated unknown input. Φi are the integral gains matrices.
Ni,Gi,Li,Hi,Φi and M2 are the unknown parameters of the
local PMIO which we have to design.
The global state estimation is a fuzzy combination of each
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local observer outputs. The overall PMIO dynamics will then
be a weighted sum of individual linear PMIO as follows:

ż(t) =
h
∑

i=1
hi(ξ (t))(Niz(t)+Giu(t)+Liy(t)+Hi f̂s(t))

x̂(t) = z(t)+M2y(t)
˙̂fs(t) =

h
∑

i=1
hi(ξ (t))Φsi(y(t)− ŷ(t))+ f̂s−1(t)

...
˙̂f2(t) =

h
∑

i=1
hi(ξ (t))Φ2i(y(t)− ŷ(t))+ f̂1(t)

˙̂f1(t) =
h
∑

i=1
hi(ξ (t))Φ1i(y(t)− ŷ(t))

(9)

where the weights hi(ξ (t)), (i = 1, ...,h) are the same as the
weights functions used in T-S descriptor model (3). f̂ j(t), j =
1, ...,s are the estimation of the (s−1) first derivatives of the
fault f (t).
The state and the fault estimation errors are given by:

e(t) = x(t)− x̂(t) (10)

e j(t) = f (s− j)(t)− f̂ j(t), j = 1,2, ...,s (11)

we assume that f (s) = 0.
For subsequently it is assumed that the matrix C is constant.
Under Assumption A3 [3], there exists nonsingular matrices
M1 ∈ Rn×n and M2 ∈ Rn×m such that:

M1E +M2C = In (12)

The dynamic estimation error is then described by:

ė(t) = ż(t)−M1Eẋ(t) (13)

Then, the dynamics of the state and the fault estimation errors
are given as the following form:

ė(t) =
h

∑
i=1

hi(ξ (t))[Nie(t)+(M1Ai −LiC−NiM1E)x(t)

+(M1Bi −Gi)u(t)+(M1Bi −Hi) f (t)+Hies(t)] (14)

ės(t) =−
h

∑
i=1

hi(ξ (t))ΦsiCe(t)+ es−1(t) (15)

...

ė2(t) =−
h

∑
i=1

hi(ξ (t))Φ2iCe(t)+ e1(t) (16)

ė1(t) =−
h

∑
i=1

hi(ξ (t))Φ1iCe(t) (17)

If the following conditions hold true ∀ i = 1, ...,h:

M1Ai −LiC−NiM1E = 0 (18a)
M1E +M2C = In (18b)
M1Bi −Gi = 0 (18c)
LiG−NiT2G−T1Ri = 0 (18d)
M1Bi −Hi = 0 (18e)

then, the estimation error dynamic (14) becomes:

ė(t) =
h

∑
i=1

hi(ξ (t))[Nie(t)+Hies(t)] (19)

or from equation (18), the above equation is equivalents to:

ė(t) =
h

∑
i=1

hi(ξ (t))[(M1Ai +KiC)e(t)+Hies(t)] (20)

where

Ki = NiM2 −Li (21)

The equations (15)-(17) and (20) can be rewritten in the
following augmented form:

˙̄e(t) =
h

∑
i=1

hi(ξ (t))
(
Āi + K̄iC̄

)
ē(t) (22)

where

ē(t) =


e(t)
es(t)

...
el(t)

 , Āi =



M1Ai Hi 0 · · · 0 0
0 0 Is · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Is 0
0 0 0 · · · 0 Is
0 0 0 · · · 0 0



K̄i =


Ki

−Φsi
...

−Φ2i
−Φ1i

 , C̄ =
[

C 0 · · · · · · 0 0
]

The system dynamics [Āi+ K̄iC̄] can be stabilized by selecting
the gain K̄i thanks to the detectability of each pair (Āi;C̄),
∀ i = 1, ...h.
In the sequel and before considering the stability of the
estimation error dynamics (22), it is shown how to find
matrices M1 and M2 such that constraint (18b) is satisfied.
For that, rewrite (18b) as follows:[

M1 M2
][ E

C

]
=
[

In
]

(23)

A solution
[

M1 M2
]

exists if [4] :

rank
[

E
C

]
= n (24)

Then, a particular solution of (23) using the pseudo inverse
matrix denoted by (·)+ is given by:

[
M1 M2

]
=

[
E
C

]+
(25)

The proposed observer give the possibility to estimate a large
class of faults, because of its multi-integral structure which
may change according to the class of faults. Thereafter, the
outputs of this observer will be used in fault tolerant control.
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IV. FTC FOR T-S DESCRIPTOR SYSTEMS

By using the PMIO (8) and the proposed active fault tolerant
control (5), the objective is to determine the parameters of the
used observer and the gains Γi in order to minimize the impact
of actuator faults on the T-S descriptor model output. The
system with the fault f (t)∈ Rn f is described by the following
T-S model with measurable premise variables: Eẋ(t) =

h
∑

i=1
hi(ξ (t))

[
Aix(t)+Biu f (t)+Bi f (t)

]
y(t) =Cx(t)

(26)

The goal is to design the control law u f (t) such that the
system state x f (t) converges toward the reference state x(t).
In order to prove both the stability of the closed-loop system
and the convergence of the state and fault estimation errors and
according to the equations (5), (8) and (26), the time derivative
of the augmented errors (22) become then:

˙̄ea(t) =
h

∑
i=1

hi(ξ (t))
(
Ãi + K̃iC̃

)
ēa(t) (27)

where

ēa(t)=


e(t)
es(t)

...
el(t)

 , Ãi =


M1Ai (M1 + In)Bi 0 · · · 0 0

0 0 Is · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Is 0
0 0 0 · · · 0 Is
0 0 0 · · · 0 0



K̃i =


Ki BiΓi

−Φsi 0
...

...
−Φ2i 0
−Φ1i 0

 , C̃ =

[
C 0 · · · · · · 0 0
In 0 · · · · · · 0 0

]

The synthesis of the gains K̃i of the PMI Observer and those
of the controller Γi are obtained by solving the LMIs given
in the following theorem.

Theorem 1: [5] The PMIO (8) is asymptotically stable, if
there exist a symmetrical and definite positive matrix Q and a
matrices W̃i = QK̃i checking the following LMIs

Ãi
T Q+QÃi +C̃TW̃i

T
+W̃iC̃ < 0, ∀ i ∈ {1, ...,h} (28)

�

V. SIMULATION EXAMPLE

To illustrate the performances of the proposed approach, let
us consider the following nonlinear dynamic system:

x1(t) = x2(t)
x2(t) =−2x1(t)−3x2(t)+ x4(t)− x3

4(t)+2u(t)
0 = x1(t)+ x2(t)−2x3(t)
0 = −x1(t)− x2(t)+ x3

4(t)−5x4(t)
y1(t) = x1(t)+ x3(t)
y2(t) = x2(t)+ x4(t)
y3(t) = x4(t)

(29)

To carry out the proposed PMI observer design, system (29)
is rewritten as:

Eẋ(t) = A(x(t))x(t)+Bu(t)
y(t) =Cx(t) (30)

where

A(x(t)) =


0 1 0 0
−2 −3 0 (1− x2

4(t))
1 1 −2 0
−1 −1 0 (x2

4(t)−5)

 , B =


0
2
0
0



E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 andC =

 1 0 1 0
0 1 0 1
0 0 0 1


System (30) can be exactly represented by the following fuzzy
model:  Eẋ(t) =

4
∑

i=1
hi(ξ (t))

[
Aix(t)+Biu(t)

]
y(t) =Cx(t)

(31)

where Bi = B =


0
1
0
0



A1 =


0 1 0 0
−2 −3 0 1
1 1 −2 0
−1 −1 0 −5

 , A2 =


0 1 0 0
−2 −3 0 1
1 1 −2 0
−1 −1 0 −1



A3 =


0 1 0 0
−2 −3 0 −3
1 1 −2 0
−1 −1 0 −5

 , A4 =


0 1 0 0
−2 −3 0 −3
1 1 −2 0
−1 −1 0 −1


The membership functions are given by:

h1(x(t)) =
((1−x2

4(t))−1)((x2
4(t)−5)+5)

−16 ,

h2(x(t)) =
((1−x2

4(t))−1)(1+(x2
4(t)−5))

16 ,

h3(x(t)) =
(3+(1−x2

4(t)))((x
2
4(t)−5)+5)

16 ,

h4(x(t)) =
(3+(1−x2

4(t)))(1+(x2
4(t)−5))

−16

Now, following the design of PMIO and the FTC controller
algorithm in the above sections, we consider that the matrix
Bi = B and the fuzzy model (31) is affected by a varying
actuator fault as follows: Eẋ(t) =

4
∑

i=1
hi(ξ (t))

[
Aix(t)+B(u(t)+ f (t))

]
y(t) =Cx(t)

(32)

u(t)= 10sin(0,2πt)and f (t)= (0.8(t−20)−0.08(t−20)2)ε(t)

where {
ε(t) = 1 f or 10 ≤ t ≤ 18
ε(t) = 0 elsewhere
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A. state and fault estimation

According to the given procedure, we design the PMIO
based on theorem 1 via the Matlab LMI toolbox. Then we
obtain the proportional gains matrices Ki and the integral
gains matrices Φi for i = 1, ...,h. The state estimation and the
fault estimation given by the proposed PMIO are shown on
the following figures.
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Fig. 1. Nonlinear real states x1(t) and its estimated x̂1(t)
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Fig. 2. Nonlinear real states x2(t) and its estimated x̂2(t)
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Fig. 3. Nonlinear real states x3(t) and its estimated x̂3(t)
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Fig. 4. Nonlinear real states x4(t) and its estimated x̂4(t)

The behavior of the PMIO is shown in the previous figures (1)
to (4). It is observed that the proposed PMIO rebuilds the state
by using the estimate of the fault presented in the following
figure.
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Fig. 5. Actuator fault f (t) and its estimated f̂ (t)

The estimation of the actuator fault figure (5) is used to design
the fault tolerant control.

B. Fault tolerant control of T-S descriptor systems

The control observer based control law given by the equa-
tions (9) is designed by solving the LMI optimization problem
defined in the theorem 1. The feedback gains Γi are given by:

Γ1 =
[
−0.4163 −3.7974 0.3246 2.2841

]
,

Γ2 =
[
−0.4163 −3.7974 0.3246 2.2841

]
,

Γ3 =
[
−0.5789 −1.0026 0.4999 −1.8506

]
,

Γ4 =
[
−0.5789 −1.0026 0.4999 −1.8506

]
The following figures illustrate a comparison between the
output of the reference model (without fault), the output of
the faulty system without FTC and finally the output with
FTC. The proposed observer is robust with respect to varying
actuator additive fault f (t).
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Fig. 6. y1(t) of the system: without fault, with fault and output with FTC
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Fig. 7. y2(t) of the system: without fault, with fault and output with FTC
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Fig. 8. y3(t) of the system: without fault, with fault and output with FTC

From these figures, the FTC scheme can accommodate ef-
fectively the additive actuator fault. Here, the PMI Observer

shows very good results for the estimation of abrupt actuator
fault.

VI. CONCLUSIONS

A combined state, faults estimation and fault tolerant control
method have been presented based on PMIO for fuzzy de-
scriptor systems affected by actuator faults. The fault tolerant
control requires the simultaneous estimations of the state and
faults, obtained by the proposed fuzzy PIMO. This observer
admits a greatest potential to estimate time varying faults with
a good accuracy simultaneously with the estimation of the
state. Sufficient stability conditions are given in terms of LMI.
Results have been illustrated in simulation.
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